EE/CprE/SE 491 WEEKLY REPORT 03

Video Pipeline for Machine Computer Vision

09/26/24 - 10/3/24
Group number: sdmay25-01
Advisors: Dr. Jones and Dr. Zambreno Client: JR Spidell
Team Members:

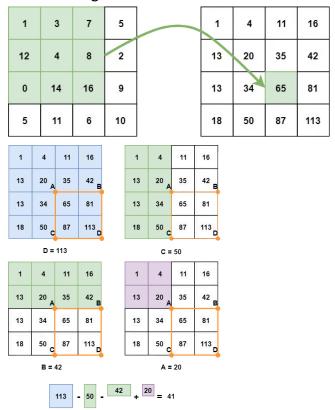
Lindsey Wessel — ML Face & Eye Detection

James Minardi — Hardware

Eli Ripperda – Embedded Systems

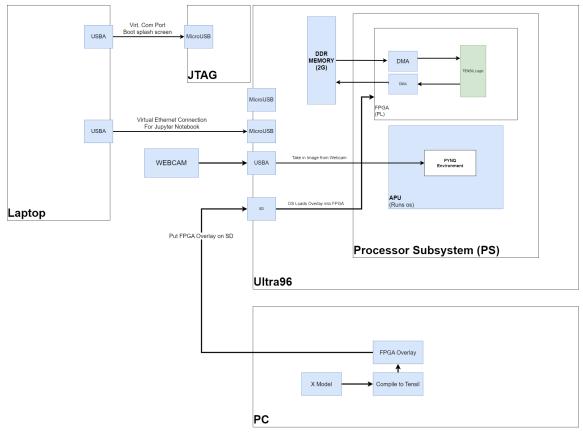
Mason Inman – Semantic Segmentation Optimization

Table of Contents:


Team Members:	1
Table of Contents:	1
Weekly Summary:	2
Past Week Accomplishments	2
Pending Issues	3
ndividual Contributions	
Forward Plan	4
Advisor Meeting Notes	4
Client Meeting Notes - 9/29	

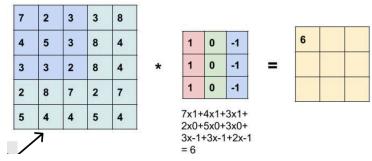
Weekly Summary:

This week, sdmay25-01 made significant initial progress. Lindsey was able to get a local environment working. Mason was able to share knowledge about CNNs with the team. James and Eli looked into a thesis paper providing useful information about our Ultra96 board and Pynq environment. Additionally, as a team, we were able to discuss a high-level block diagram with the client about the system to be implemented.


Past Week Accomplishments

- Lindsey's Accomplishments
 - Acquire understanding of how Computers Detect Human Faces
 - Haar-like Features
 - Internal Images

- Summed Area Table is used to calculate the difference between to rectuangular pixel sums
- Adaptive Boost Training
 - Using weak data sets the computer create to create stronger data sets (Test what data sets should have the most and least weight with Ada (adaptive) Boost)
- James' Accomplishments


- ➤ Gain basic understanding of Tensil
- > Work on system diagram

- Eli's Accomplishments
 - > Studied a "Bachelor Thesis" from two students who study at the University of Applied Sciences and Arts Northwestern Switzerland. This thesis is titled "Al High-Performance Solution on FPGA."
- Mason's Accomplishments

$$(f * g)(t) := \int_{-\infty}^{\infty} f(\tau)g(t - \tau) d\tau.$$

- Studied the following equations. It denotes the calculus based definition of convolutions. The product of two functions as a function "slides" over time across the other.
- > However, we will be primarily using the piecewise, linear algebra, based definition depicted below.

- > Researched and divided the UNET architecture into three parts
 - Encoder
 - Captures Contextual Information and "Encodes" it into additional Channels
 - The Convolutions decrease image resolution, but increase channels
 - Think of channels like the Z-Dimension
 - Bottle-neck
 - Serves as the bottom of the "U"
 - Feeds Encoder and Decoder
 - Decoder
 - Works to locate features
 - Increase image resolution, decrease channels
 - The skip channels are able to fill the decoder in on previously lost data from the encoder at each layer, tremendously helping with accuracy
- Solved dependency issues with local model
- Team Accomplishments
 - > Worked as a team and with the client to build a high-level system diagram.

Pending Issues

- Lindsey's Issues
 - > Finding time in the week to sit down and work on the project. Working in small segments is causing learning/development delays.
- James' Issues
 - ➤ No issues
- Eli's Issues
 - > See team issues.
 - > No additional issues
- Mason's Issues

> Setting up a development environment is taking some additional time. There are many dependency issues when using the environment.yml file.

Team Issues

> Waiting on NDA from client.

Individual Contributions

Name	Cumulative Hours	Week 3
Lindsey	40	16
James	32	8
Eli	32	8
Mason	40	8
Team	144	40

Forward Plan

- Lindsey's Plan
 - > Continue development by learning about eye detection
- James' Plan
 - ➤ Look over CPRE 488 MP-2 lab.
 - > Set up board environment, remote access, etc.
- Eli's Plan
 - > Begin researching Tensil.ai
 - > Stretch goal: Begin working with Ultra96 to run linux on it.
- Mason's Plan
 - > Train the base RITnet model to gain an understanding of the process and how it works.
- Team Plan
 - ➤ Continue research in individual areas. Consolidate information for future meetings and begin breaking down the design.

Advisor Meeting Notes

- We initially were going to work on the CPRE 488 MP-2 lab, but with how our project has developed our advisor suggested we just read through it and try to understand what is going on.
- Our advisors found a project from another university that uses the same board and PYNQ environment.
- Showed advisors our package we received with our hardware.

Client Meeting Notes - 9/29

- Client is working on NDA
- We will be looking inside the model to find areas of improvement
 - Can retrain specific filters
- After getting the board set up we should work on getting it connected to the internet to be able to remotely connect and update packages.
 - Directly connect the board to a workstation through JuPYter Notebook
 - o A current ISU team is familiar with this and may be useful
- Connect the webcam to the board and get work on getting an image output
- Client helped us with our questions about the board and the JTAG card